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Intelligent Decision-Making

Matthew Luke Dixon and Carol S. Dweck
Department of Psychology, Stanford University

A revised view of the amygdala, its relationship with the prefrontal cortex (PFC), and its role in
intelligent human decision-making is proposed. Based on recent findings, we present a framework in
which the amygdala plays a central role in the value computations that determine which goals are worth
pursuing, while the PFC plays a central role in generating and evaluating possible action plans to realize
these goals. We suggest that the amygdala and PFC continuously work together during decision-making
and goal pursuit as individuals compute and recompute the value and likelihood of different goals while
interacting with a dynamic world. Once seen as chiefly involved in simple stimulus—outcome associative
learning, the amygdala is shown to play a sophisticated role in human decision-making by contributing
to the moment-by-moment integration of multiple costs and benefits to determine optimal choices. We
discuss implications of the framework for brain development, emotion regulation, intelligence, and

psychopathology.
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This article is about the amygdala and, in particular, how its
functions and its interactions with the prefrontal cortex (PFC) play
a key role in intelligent decision-making. Historically, the amygdala
has been seen as playing a secondary, perhaps even subservient, role to
the PFC. We instead propose that they play complementary roles in
constructing intelligent decisions. Specifically, we propose that the
amygdala plays a central role in the value computations that determine
which goals are worth pursuing, while the PFC plays a central role in
simulating and evaluating possible action plans to realize these goals.

Over the past 25 years, the neuroscience of value-based decision-
making has made tremendous progress in discovering the con-
tributions of many subcortical and cortical brain regions to
decision-related processes (e.g., Averbeck & Costa, 2017; Bartra
et al., 2013; Bechara & Damasio, 2005; Damasio, 1994; Haber &
Knutson, 2010; Rangel et al., 2008; Rushworth et al., 2011; Sharpe &
Schoenbaum, 2016). Although this work has emphasized the idea
that many regions work together to support the formation of intelli-
gent decisions, much of this research has emphasized the PFC as the
“jewel in the crown” so to speak. Specifically, much of the existing
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research contains implicit or explicit notions of a hierarchy in which
many lower-level regions feed “raw material” to the PFC (particu-
larly the ventromedial PFC/orbitofrontal cortex), which then com-
putes the value of different choices and guides decisions.

There appear to be at least two reasons for this emphasis on the
PFC, both of which emphasize the sophistication, and hence the
uniqueness, of PFC functions. Yet, we will present evidence that the
PFC is not unique in these abilities and that the amygdala is entirely
capable of performing similarly sophisticated functions.

First, the PFC is believed to serve as a domain-general value-
computing system that maps raw inputs onto a “‘common currency”
space and allows different options to be directly compared (Ballesta
et al., 2020; Behrens et al., 2008; Juechems et al., 2019; Levy &
Glimcher, 2012; O’Doherty, 2011; Padoa-Schioppa & Conen, 2017;
Rich & Wallis, 2016; Rustichini & Padoa-Schioppa, 2015; Strait et
al., 2014; Yamada et al., 2018). Thus, according to this idea, the
value signals and comparison process supported by the PFC are
uniquely relevant for guiding choice.

Second, reinforcement learning (RL) models, which have become
increasingly popular, have long emphasized the PFC as a primary
neural substrate underlying sophisticated “model-based” value
computations (e.g., Daw et al.,, 2005; Dolan & Dayan, 2013;
Gléascher et al., 2010; Hampton et al., 2006; Holroyd & Verguts,
2021; Jones et al., 2012; Smittenaar et al., 2013). The implication is
that these sophisticated model-based calculations of the PFC are
able to account for intelligent decision-making.

However, a variety of evidence suggests that the PFC is not unique
in either of these regards. In particular, we will review evidence
demonstrating (a) that the amygdala also supports integrative com-
mon currency value signals that predict choice and (b) that amygdala
activity meets the criteria for sophisticated model-based value com-
putations. In fact, amygdala computations are sufficiently complex
that they contribute to tasks traditionally defined as “cognitive,” such
as working memory and attention (e.g., Adolphs, 2010; Peck et al.,
2013; Pessoa, 2008, 2010; Schaefer et al., 2006; Todd et al., 2012).
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2 DIXON AND DWECK

These data challenge the idea that the PFC is the chief integrative
center that steers goal-related decisions.

If the amygdala and PFC are not distinguished by the sophistica-
tion of their computations and do not have a hierarchical relation-
ship, what then are their relative roles in guiding intelligent
decisions? The purpose of this article is to present the view that
the amygdala and PFC play complementary roles with the amygdala
being preferentially involved in model-based value computations
that determine which goals are worth pursuing in order to satisfy
current and future needs (e.g., the need for food or positive social
relationships) and the PFC being preferentially involved in model-
based simulations of goal-relevant action plans and in evaluating
those plans in terms of likely effectiveness and cost. Furthermore,
we suggest that decision-making (and goal-directed behavior in
general) involves continuous interactions between the amygdala and
PFC which allow for potentially valuable goal states to become
coupled with action plans.

Our framework builds on and extends prior models that have
pointed to the role of the amygdala in adaptive value computations
that influence decision-making (e.g., Adolphs & Anderson, 2018;
Averbeck & Costa, 2017; Cunningham & Brosch, 2012;
Grabenhorst & Schultz, 2021; Janak & Tye, 2015; Morrison &
Salzman, 2010; Pessoa, 2010; Seymour & Dolan, 2008; Sharpe &
Schoenbaum, 2016; Wassum & Izquierdo, 2015) and models that
have pointed to the cooperative nature of amygdala—PFC interac-
tions (e.g., Baxter & Murray, 2002; Bechara et al., 1999; Gaffan
et al., 1993; Gangopadhyay et al., 2021; Lichtenberg et al., 2017;
Morrison & Salzman, 2010; Sharpe & Schoenbaum, 2016). How-
ever, given these important theoretical developments, why has much
prominent work continued to portray the PFC as having the domi-
nant influence in governing decisions? One possibility is that this
is because there has yet to be a coherent narrative that ties together
all of the available evidence, that explicitly attributes a sophisti-
cated model-based value-computing role to the amygdala, and that
describes how these computations may differ from, and work in
collaboration with, those of the PFC in the service of decision-
making. In line with this, Averbeck and Costa (2017) point out that
the nature of amygdala value computations has not been well
incorporated into prevalent models of decision-making.

We believe that our perspective is unique in explicitly suggesting
that, like the PFC, the amygdala is involved in model-based value
computations that are integrative, forward looking (i.e., sensitive to
future consequences), and flexible (i.e., can rapidly adapt without
requiring extensive corrective feedback). According to this perspec-
tive, the amygdala and PFC operate in parallel and perform com-
plementary functions that co-create intelligent decisions. The key
idea, as we have suggested, is that the amygdala is closely aligned
with the ultimate motivations that drive behavior (e.g., the desire to
be well fed, liked by others, and perceived as smart and competent),
while the PFC is closely aligned with cognitive and action-related
functions that support the means by which those ultimate goals are
achieved. These means represented by the PFC may be concrete
(e.g., walking from place A to B) or highly abstract (e.g., regulating
thoughts in order to feel better).

To support this argument, we highlight evidence that the amyg-
dala is anatomically positioned to operate as an integrative hub that
can combine information about current needs (Baxter & Murray,
2002; Douglass et al., 2017; Gangopadhyay et al., 2021; Gothard,
2020; Hu et al., 2021; Izquierdo & Murray, 2007; Kwon et al., 2021)

with sensory and contextual information (Cunningham & Brosch,
2012; Prévost et al., 2013; Saez et al., 2015) and the possible future
consequences of choices (Ghods-Sharifi et al., 2009; Hernddi et al.,
2015; Winstanley et al., 2004; Zangemeister et al., 2016). Further-
more, we draw upon evidence that many PFC regions are highly
connected to the motor system (Passingham & Wise, 2012; Picard &
Strick, 1996; Vogt, 2009; Yeterian et al., 2012), contain a soma-
totopic organization (Dum & Strick, 1991; Jezzini et al., 2012;
Procyk et al., 2016; Vogt, 2009), are sensitive to the costs and
benefits of possible actions (Rushworth et al., 2011; Shackman et al.,
2011; Shenhav et al., 2013; Shima & Tanji, 1998; Touroutoglou
et al., 2020), and show robust engagement during the planning and
execution of specific actions (Bunge et al., 2003; Dixon et al., 2014;
Gerlach et al.,, 2014; Tanji & Hoshi, 2001; Vogt, 2016;
Zangemeister et al., 2016).

Scope of the Current Article

Based on a systematic review of the literature, our goal is to
present a framework for how the amygdala and amygdala—PFC
interactions contribute to value-based decision-making in humans.
The amygdala and PFC are, of course, not monolithic or isolated
entities. In fact, each is composed of numerous subregions or nuclei
and even more localized cell types that each has specific
electrophysiological properties and connectivity patterns (e.g.,
Allen et al., 2017; Ciocchi et al., 2010; Haubensak et al., 2010;
Hong et al., 2014; Tye et al., 2011; Wang et al., 2018; for reviews,
see Duvarci & Pare, 2014; Janak & Tye, 2015). However, in keeping
with our goal of providing an overarching account of how the
amygdala and PFC co-create intelligent decisions, our primary task
is to characterize the “overall” functions of the amygdala and PFC
which may emerge from the collective interactions of their specific
subregions, cell types, and microcircuits according to multiscale
network-based principles (e.g., see Wilson et al., 2010).

Our focus is on human decision-making and therefore most of the
human studies that we review employed functional magnetic reso-
nance imaging (fMRI) or examined people with lesions; few studies
recorded single-unit activity. While these human studies offer
critical insights, they also have limitations—fMRI is an indirect
measure of neural activity that has limited temporal resolution, and
human lesion studies may involve heterogeneous causes, varying
amounts of time since the lesion, and different spatial distributions
(i.e., lesions may encompass regions beyond the amygdala or
encompass different sets of PFC subregions).

For these reasons, we also review findings from non-human
animals (primates and rodents)—species that have a clearly defined
amygdala and PFC—to support our case. These studies used either
single-unit recordings or acute disruption (via lesions, optogenetic
stimulation, or pharmacological inactivation) to directly examine
neural activity patterns and their functional consequences. Of
course, these data are also limited in that there are important
behavioral and neurobiological differences between humans and
non-human animals. Therefore, combining human and non-human
animal findings provides a broad picture of how the amygdala and
amygdala—PFC interactions contribute to value-based decision-
making.

In the following sections, we first provide an in-depth analysis of
studies showing that the amygdala demonstrates sophisticated
computational properties and promotes intelligent decisions.
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This is followed by an overview of the complementary role of the
PFC in action generation, evaluation, and planning, focusing on the
contributions of several PFC subregions. We then bring these pieces
together by addressing amygdala—PFC interactions in decision-
making and during goal pursuit. In order to stimulate future research
on the contributions of the amygdala to decision-making, we also
consider the way in which the amygdala’s role differs from the
functions of several other motivation-related brain regions. Finally,
we conclude with a discussion of the implications of this revised
understanding of amygdala—PFC interactions in intelligent decision-
making for such topics as intelligence, emotion regulation, and
psychopathology.

Properties of the Amygdala

Before providing evidence of the amygdala’s involvement in
intelligent decision-making, we first review findings suggesting that
it possesses essential properties that enable it to play a central role in
predicting the value of possible goal states. Specifically, below we
provide evidence that the amygdala is characterized by:

i. Widely distributed anatomical connectivity, enabling it to
receive and integrate a wide variety of need-relevant
signals, and to send goal-relevant output to appropriate
places.

ii. Flexible value-coding properties that could support intel-
ligent goal-value computations.

The Amygdala Is a Connectivity Hub

The amygdala is anatomically connected to widely distributed
areas of the brain, making it well positioned to operate as a “hub”
that can integrate diverse information and modulate other systems in
accordance with goal values (Figure 1; Bickart et al., 2014; Pessoa,
2008). In particular, the amygdala is anatomically positioned to
receive and integrate a variety of information relevant to goal-value
computation, including information about current needs, situational
context, prior experience, and high-level cognitive representations
(e.g., related to possible future events).

While we will generally refer to “the amygdala” throughout the
manuscript for simplicity, it is important to note that it is a
heterogenous structure consisting of multiple distinct nuclei with
different connectivity patterns (Duvarci & Pare, 2014; Janak & Tye,
2015; Pitkénen et al., 1997; Swanson & Petrovich, 1998). It is often
subdivided into two major areas that encompass a large portion of
the amygdala and many of its nuclei: (a) the basolateral amygdala
(BLA) complex, consisting of the basal, basomedial, and lateral
nuclei; and (b) the central amygdala (CeA), consisting of primarily
the central nucleus, which contains medial and lateral subdivisions
(Janak & Tye, 2015; LeDoux, 2000; McDonald, 1998). We refer to
these two subdivisions when describing connectivity patterns and
functions of the amygdala, but acknowledge that the picture is more
complex and will ultimately require a thorough understanding of all
amygdala nuclei. With few exceptions, the connections reviewed
below are bidirectional.

Figure 1
A Highly Simplified Illustration of the Anatomical Connections of
the Amygdale

Note. 1t is important to keep in mind that individual nuclei have distinct
connectivity patterns and that this figure is only a general summary. The
amygdala has direct (monosynaptic) connections with widespread areas of the
brain, positioning it as a connector “hub.” These connections include sensory
regions, various parts of the prefrontal cortex (orange nodes), brainstem and
subcortical homeostatic regulatory regions, memory regions, and other
cognitive regions (blue nodes). We highlight PFC regions in orange to
demonstrate the widespread connectivity between the amygdala and PFC.
Lower opacity lines reflect weak (but present) connections. ATL = anterior
temporal lobe; aMCC = anterior midcingulate cortex; Aud = auditory cortex;
ExS = extrastriate cortex; Hippo = hippocampus; Hypo = hypothalamus;
IFG = inferior frontal gyrus; ITC = inferotemporal cortex; LC = locus
coeruleus; NAcc = nucleus accumbens; OFC = orbitofrontal cortex; PAG =
periaqueductal gray; PBN = parabrachial nucleus; pgACC = pregenual
anterior cingulate cortex; PMC = premotor cortex; RSC = retrosplenial
cortex; sgACC = subgenual anterior cingulate cortex; VTA/SN = ventral
tegmental area/substantia nigra; PFC = prefrontal cortex. See the online article
for the color version of this figure.

Sensory Connections

The amygdala is richly connected with all sensory modalities,
suggesting it has access to detailed representations of “what is
currently happening” (Aggleton et al., 1980; Amaral & Price,
1984; Ghashghaei & Barbas, 2002; McDonald, 1998; Price,
2003). Furthermore, the amygdala projects back to each of these
areas, providing a route by which it can modulate sensory proces-
sing to enhance the representation of goal-relevant events (Anderson
& Phelps, 2001; Pessoa, 2010; Todd et al., 2012; Vuilleumier,
2005). In general, sensory connections (especially visual, auditory,
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4 DIXON AND DWECK

and somatosensory) are robust for the BLA but weak or absent for
the CeA (McDonald, 1998; Price, 2003).

Connections With Memory Regions

The amygdala also has robust connections with a variety of
memory-related regions (hippocampus, parahippocampal gyrus,
perirhinal and entorhinal cortices, retrosplenial cortex, ventromedial
PFC; Aggleton et al., 1980; McDonald, 1998; Parvizi et al., 2006)
that are involved in constructing spatial, autobiographical, and
schema-based models of the world (Behrens et al., 2018; Gilboa &
Marlatte, 2017; van Kesteren et al., 2012). Input from these regions to
the amygdala may contextualize sensory input based on prior experi-
ence and supply information about simulated future events, thereby
endowing the amygdala with information that can support model-
based value computations.

Need-Relevant (Homeostatic) Connections

The amygdala also has access to need-relevant interoceptive
signals (e.g., pleasant and nociceptive signals related to hunger,
thirst, temperature, affective touch; Craig, 2002; Johansen et al.,
2010; Sternson & Eiselt, 2017) via monosynaptic connections with
the insula, hypothalamus, periaqueductal gray (PAG), bed nucleus of
the stria terminalis, parabrachial nucleus, nucleus of the solitary tract,
and vagus nerve (Aggleton et al., 1980; LeDoux, 2000; McDonald,
1998; Price, 2003; Price & Amaral, 1981). The amygdala also
projects to the ventral striatum (VS) and is well connected to nuclei
that control the release of major neuromodulators (chemicals that
modulate brain function often based on motivationally significant
information), including the ventral tegmental area/substantia nigra
(VTA/SN; dopamine), dorsal raphe nucleus (serotonin); locus coer-
uleus (norepinephrine), and basal nucleus of Meynert (acetylcholine;
Aggleton et al., 1980; McDonald, 1998; Price & Amaral, 1981).
Some of these homeostatic connections are stronger for the CeA, but
they are also present for the BLA (Price, 2003). Thus, by combining
homeostatic (interoceptive) inputs with a rich stream of exteroceptive
sensory data and memory-related (model-based) information, the
amygdala is well positioned to contribute to the process of determin-
ing the goal relevance or value of ongoing events and contributing to
decisions about which goals to pursue. Moreover, projections back to
these regions would allow the amygdala to widely influence infor-
mation processing based on current goal values.

PFC Connections

The amygdala has access to cognitive and action-related infor-
mation via connections with PFC regions including the orbitofrontal
cortex (OFC), pregenual and subgenual anterior cingulate cortex
(ACCQ), anterior midcingulate cortex (aMCC), and insula (Aggleton
et al., 1980; Amaral & Price, 1984; Carmichael & Price, 1995;
Ghashghaei & Barbas, 2002; Johansen-Berg et al., 2008;
McDonald, 1998; Porrino et al., 1981; Price, 2003). The amygdala
also has weak connections with the premotor cortex and inferior
frontal gyrus (Amaral & Price, 1984). Although the amygdala is
weakly connected with the lateral PFC (Ghashghaei & Barbas,
2002)—a key region involved in the executive control of
behavior—it may communicate indirectly with this region via
intermediary PFC regions (e.g., OFC, cingulate cortex, insula) or

the thalamus. Altogether, these PFC connections may provide a
route by which goal-value computation can become coupled with
cognitive activity including the simulation of possible action plans.
PFC connections are generally stronger for the BLA compared to the
CeA (Ghashghaei & Barbas, 2002).

Connections With the Thalamus

In addition to direct connections between the amygdala and the
PFC, these regions are indirectly connected to each other via the
mediodorsal thalamus (Aggleton & Mishkin, 1984; Porrino et al.,
1981)—a pathway that contributes to value-based learning and
choice (Gaffan et al., 1993; Gaffan & Murray, 1990; Murray &
Rudebeck, 2013). Evidence suggests that the mediodorsal thalamus
does not simply amplify amygdala or PFC activity, but may promote
plasticity (Baxter, 2013) in a way that allows models of the world
used by the amygdala and PFC to be updated. Thus, these connec-
tions with the thalamus may further endow the amygdala with
information needed to support sophisticated model-based value
computations.

Summary of Anatomical Connectivity

To summarize, the amygdala’s input connections provide infor-
mation about a wide range of sensory and need-relevant signals
conveying what is currently happening in the internal and external
environment. These connections would enable the amygdala to
contribute to the process of determining the current value of possible
goal states. The amygdala’s widespread output connections may
allow it to influence and possibly coordinate brain-wide dynamics
involving multiple systems (perceptual, autonomic, action, cogni-
tive). Consistent with this, pharmacological inactivation of the
amygdala disrupts communication throughout the global brain
landscape, resulting in weaker communication between PFC regions
(e.g., orbital and medial PFC), between limbic regions, and between
limbic and PFC regions (Grayson et al., 2016).

These results suggest that the amygdala may serve as a glue that
binds together large-scale neural circuits. Broadly in line with this,
“resting state” functional connectivity studies with humans have
demonstrated that fluctuations in amygdala activity are coupled to
activity fluctuations in large-scale brain networks involved in inter-
oception, memory, attention, and social cognition (e.g., the amygdala
couples with regions associated with the salience network, dorsal
attention network, and default mode network; Bickart et al., 2014,
Gabard-Durnam et al., 2014; Kerestes et al., 2017; Kleckner et al.,
2017; Roy et al., 2009; Seeley et al., 2007; Sylvester et al., 2020).

Flexible Value-Coding Properties

Before addressing the contribution of the amygdala to goal-value
computations and to making decisions between goals, we first note
some of the general properties of amygdala value coding that have
been observed across a range of tasks.

A variety of evidence suggests that the amygdala is centrally
involved in the generation of valence—the motivational value that
colors an event as good or bad and has the effect of mobilizing
attention, cognitive resources, and action planning systems. Studies
that have presented individuals with rewarding or aversive outcomes
have identified intermingled populations of valence-specific
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THE AMYGDALA AND THE PREFRONTAL CORTEX 5

neurons in the amygdala—populations that have distinct genetic
profiles and anatomical projections (e.g., Belova et al., 2008; Lee
et al., 2016; Paton et al., 2006; Schoenbaum et al., 1999; Shabel &
Janak, 2009; reviewed in Janak & Tye, 2015; Morrison & Salzman,
2010; O’Neill et al., 2018; Pignatelli & Beyeler, 2019). Although
some neurons respond to both positive and negative outcomes and
may therefore encode a salience/intensity signal (e.g., Belova et al.,
2007, 2008; Shabel & Janak, 2009), a large proportion of neurons
selectively respond to positive or negative outcomes. These valence-
coding neurons signal the value of virtually any goal-relevant
stimuli (Adolphs, 2010; Ambroggi et al., 2008; Anderson et al.,
2003; Baxter & Murray, 2002; Belova et al., 2008; Biichel & Dolan,
2000; Davis et al., 2010; Gottfried et al., 2003; Holland & Gallagher,
2004; Hu et al., 2021; Kwon et al., 2021; LeDoux, 2000; Munuera
et al., 2018; Paton et al., 2006; Sescousse et al., 2013; Schoenbaum
etal., 1998; Sharpe & Schoenbaum, 2016; Tye et al., 2008). In fact,
amygdala lesions result in profound impairments that render in-
dividuals “blind” to the value of events (Weiskrantz, 1956).

Importantly, there is flexibility in how events are tagged with
value by the amygdala. It is not the case that once an event is
associated with negative value, the amygdala will rigidly signal
negative value every time that event is encountered in the future.
Instead, signals encoded by the amygdala flexibly adapt to the
current value of events, which may change depending on internal
context (e.g., current needs) or external context. For example, the
amygdala plays a necessary role in the ability to update the value of
particular foods based on current levels of hunger (Baxter & Murray,
2002; Gottfried et al., 2003; Hatfield et al., 1996; Izquierdo &
Murray, 2007; Johnson et al., 2009). Furthermore, the same stimulus
can evoke different patterns of activity in the amygdala depending
on changing external context such as task instructions (Cunningham
& Brosch, 2012).

Amygdala Contributions to Intelligent
Decision-Making

Turning now to decision-making, an intelligent decision maker
should demonstrate a number of important characteristics. Among
other things, they should take the future consequences of choices into
account; should balance the desirability of choice options with their
probability of realization; should be willing to invest high levels of
effort when it will result in highly desired outcome; and should
consider the social context in order to learn from others and make
decisions that respect the goals of others. In the following sections,
we show that empirical evidence substantiates our proposal that the
amygdala contributes to intelligent decision-making by comparing
amygdala function to these characteristics of an intelligent decision
maker. We further examine the evidence that amygdala activity
predicts the choices that individuals make in decision-making tasks;
that amygdala activity preferentially reflects online computations of
value rather than passive retrieval of stimulus—outcome associations;
and that the amygdala is more engaged when forming goals than
when actions are being taken to realize them.

Consideration of Future Consequences

Intelligent decision-making requires consideration of not only the
immediate implications of a choice, but also future consequences.
For example, it is generally thought that choosing to save some

money (rather than immediately spend it all) is an intelligent
decision because the saved money can accumulate interest and
be available to serve future needs. Future events may initially be
represented by the PFC (through its powers of event simulation);
however, we propose that the amygdala plays a key role in tagging
these representations with value based on current needs.

In one study designed to test economic savings behavior
(Zangemeister et al., 2016), human participants fasted (no food
or drink) for several hours and then made decisions about how long
to save a food reward (a vanilla-flavored dairy drink) before
consuming it. The longer they chose to save the reward before
consuming it, the more it accumulated according to the “interest
rate” on a given trial. It was, therefore, especially beneficial to save
the reward on high-interest rate trials which resulted in a large payoff
later. Participants first formed a savings goal on each trial (i.e., they
decided how long they planned on saving the reward) and then
indicated via button press every ~13 s whether they wanted to
continue saving the reward or consume it. Participants could
therefore choose to consume the reward at any point, making
this an active decision process throughout the duration of the trial.

Notably, the magnitude of amygdala activation at the time of the
initial decision (forming the savings goal) predicted both the length
of time that participants chose to save the reward and the value of the
saved reward given the interest rate on that trial (Zangemeister et al.,
2016). Specifically, greater amygdala activation was associated with
saving for a longer period of time, especially on high-interest rate
trials when it was especially beneficial to do so (Zangemeister et al.,
2016). Amygdala activation began prior to the execution of goal-
directed actions (button presses) and then was sustained until reward
consumption several minutes later, suggesting that it was specifi-
cally involved in computing the value of the savings goal and in the
continued signaling of that goal until it was achieved. Thus,
amygdala activity was future-oriented and sensitive to contextual
information (the current interest rate), and predicted participants’
choice on each trial. Using a similar task with monkeys, the authors
again found that amygdala activity (localized to both the BLA and
CeA) reflected the value of the internally generated savings goal and
predicted savings behavior (Grabenhorst et al., 2016; Hernddi
et al., 2015).

If the amygdala is critical for guiding decision-making based on
future consequences, then lesions should make individuals more
impulsive. Consistent with this, rats with BLA lesions are more
likely than controls to choose a smaller, immediate reward over a
larger but delayed reward (Winstanley et al., 2004; see also Ghods-
Sharifi et al., 2009). Thus, empirical data suggest that the amygdala
(alongside other regions such as the PFC) may contribute to
intelligent decisions by enhancing the salience of future (in addition
to immediate) consequences of choices, and in some cases, over-
coming impulsive decisions by promoting a willingness to forgo an
immediate reward if it means that waiting will result in a larger
payoff.

Balancing the Desirability of Choice Options With
Their Probability of Realization

In real-world situations, various outcomes are rarely guaranteed
to occur. It is often the case that a choice will lead to one outcome or
another with some probability. An intelligent decision maker should
effectively integrate outcome magnitude and probability and choose
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6 DIXON AND DWECK

options associated with higher expected net value. In other words,
they should not be swayed by outcome probability or magnitude
information alone.

The Iowa Gambling Task is a classic measure of decision-making
involving uncertainty that has been widely used to probe the effect
of brain lesions in humans (Bechara & Damasio, 2005). In this task,
individuals pick from decks of cards that offer varying rewards and
punishments. Unbeknownst initially to participants, some decks
offer large rewards on some occasions but even larger losses on
other occasions and are therefore disadvantageous over the long run,
while other decks offer small rewards on some occasions but even
smaller losses on other occasions and are therefore advantageous
over the long run. Although the correct choices are initially uncer-
tain, control participants learn quickly to select primarily from the
advantageous decks by integrating information about rewards and
losses over time into an overall value for each deck. In contrast,
humans with amygdala damage preferentially select from the dis-
advantageous decks across the entire task and fail to generate typical
anticipatory physiological signals prior to risky choices (Bechara
et al., 1999). Studies using other paradigms have similarly shown
that individuals with amygdala damage do not integrate outcomes
and probabilities in the same way as to control participants
(De Martino et al., 2010). Moreover, in some cases, amygdala
lesions in primates induce a more severe deficit in probabilistic
choice tasks than lesions of other parts of the motivation system such
as the VS (Costa et al., 2016).

Even when a potential loss is removed from the equation,
individuals with amygdala lesions still cannot properly integrate
reward magnitude and probability. For example, when presented
with two reward options that differ in probability, humans with
amygdala damage are more likely than controls to choose disad-
vantageous (objectively lower value) options (Weller et al., 2007).
However, amygdala damage does not strictly lead to an increase in
risky decisions. One study had rats choose between a guaranteed
small reward and an uncertain (50% probability) large reward and
found that animals with BLA lesions were more likely than controls
to choose the certain/low-reward option (Ghods-Sharifi et al., 2009).
Notably, this was objectively the lower value option across trials.

Thus, amygdala lesions can lead to different patterns of choices—
sometimes biasing decisions toward the low but certain-reward
option and sometimes biasing choices toward the high but risky
reward option (Bechara et al., 1999; Costa et al., 2016; De Martino
et al., 2010; Ghods-Sharifi et al., 2009; Weller et al., 2007; see
discussion in Pessoa, 2010). Importantly, there is no contradiction,
because in these studies amygdala lesions consistently led to
suboptimal choices from a net-value perspective, presumably
from a failure to integrate the relevant information within a given
task (Pessoa, 2010). In line with these laboratory findings, patients
with amygdala damage tend to make poor decisions in everyday life,
suggesting that the laboratory task may capture an important ele-
ment of decision-making (Bechara et al., 1999). Thus, existing
evidence suggests that the amygdala supports intelligent decision-
making by contributing to the ability to optimally integrate
information about the desirability and probability of choice op-
tions (for related neuroimaging evidence see also Hsu et al.,
2005). Individuals with orbitofrontal/ventromedial PFC damage
also demonstrate aberrant decisions in gambling tasks, suggesting
that the amygdala and PFC work together to promote adaptive
decisions (Bechara & Damasio, 2005; Gupta et al., 2011).

Incorporating Effort Into Goal-Value Computations

The overall value of a goal is not just a function of the amount of
reward it promises, but also depends on the amount of effort that
must be invested in the actions that are required to realize the goal.
Effort can factor into the computation of goal values in different
ways (Dweck, 1999; Inzlicht et al., 2018). In thinking about what it
means to make intelligent decisions, we often picture individuals
who are willing to invest considerable effort to achieve highly
desired outcomes, rather than simply settle for small rewards that
can be achieved with little effort. Thus, if the amygdala contributes
to intelligent decision-making, its activity should reflect the net
value of goals (accounting for the effort required to achieve them)
and bias decisions toward high-effort choices when they will result
in a larger payoff than a low-effort option.

To look for brain regions that may integrate reward magnitude
and required effort, Chong et al. (2017) had human participants
perform a target detection task that varied in the amount of effort
required (the frequency of shifting attention to detect target stimuli)
and the monetary reward that could be earned. After learning the
task, participants were presented with choices between performing
the low- or high-effort version of the task and receiving various
amounts of reward. To eliminate fatigue as a factor, participants
made all of their choices up front and then performed a random
subset of their choices at the end of the experiment. Using a
computational modeling approach, the authors found that partici-
pants’ choices reflected a combination of effort and reward magni-
tude (Chong et al., 2017). The authors reasoned that if a brain region
contributes to decision-making in this task, it may do so by encoding
the difference in net value between the two presented options. The
results demonstrated that amygdala activation correlated with the
difference in net value between the two options at the time of the
decision period on each trial and not simply the difference in payoff
or the difference in the effort required (i.e., it encoded the integration
of the two variables). Specifically, greater amygdala activity was
associated with a larger difference in net value between options and
therefore reflected the overall value of choice options, by taking into
account the required effort to achieve them.

Lesion studies have also provided evidence that the amygdala
contributes to the integration of rewards and effort and promotes a
willingness to invest more effort for a larger payoff. In these studies,
rodents were presented with a choice between a low-value option
that could be obtained with little effort, and a high-value option that
could be obtained only by exerting considerable effort. Lesioning or
inactivating the BLA reduced the animals’ tendency to choose the
high-effort/large-reward option over the low-effort/small-reward
option (Ghods-Sharifi et al., 2009; Hosking et al., 2014). Further-
more, in the absence of an intact amygdala, animals became
significantly slower to make a choice (Hosking et al., 2014). These
findings suggest that without an amygdala, animals have difficulty
integrating effort and reward magnitude into an overall value
estimate and are less willing to invest effort to obtain a large payoft.

Notably, a variety of findings suggest that effort costs may be
initially computed by parts of the PFC and striatum and involve
dopamine (Chong et al., 2017; Croxson et al., 2009; Hamid et al.,
2016; Jurado-Parras et al., 2020; Salamone & Correa, 2012;
Westbrook et al., 2020). This information may then be sent to
the amygdala where it can influence goal values. Thus, the key point
is not that the amygdala computes all variables that are relevant to
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determining the value of goals, but that it receives and integrates a
variety of information that can influence value signals in a manner
that promotes intelligent decisions. Several issues require clarity in
future work, including the extent to which the amygdala contributes
to cognitive versus physical effort-based decision-making (Chong
et al., 2017; Ghods-Sharifi et al., 2009; Hosking et al., 2014) and the
extent to which the default tendencies of the animals impact the way
in which amygdala lesions alter effort-based decision-making
(Hosking et al., 2014).

Sensitivity to Social Context

Intelligent decision-making often requires that individuals take
into account their social context. In some cases, it is useful to
observe others’ actions and resulting outcomes and then copy their
successful behaviors in order to more efficiently acquire beneficial
outcomes for oneself. In other cases, it is useful to consider how
various choices may impact one’s relationships with others. For
example, it is often intelligent to share resources with others because
of the long-term benefits of having social partners who may
reciprocate when they have access to resources or who may offer
protection in times of conflict. Recent studies have demonstrated
that the amygdala is exquisitely sensitive to social context during
decision-making, consistent with prior observations that this region
encodes a variety of social variables (e.g., facial expressions and the
status of others; Adolphs, 2010; Gangopadhyay et al., 2021;
Gothard, 2020; Kwon et al., 2021; Munuera et al., 2018).

One study recorded from amygdala neurons while monkeys
performed an observational learning task (Grabenhorst et al.,
2019). The monkeys learned to select a rewarded option faster
when they first had the opportunity to observe another monkey’s
decisions with the same stimulus set compared to when they learned
about a novel stimulus set, consistent with the idea that they took
advantage of observational learning to improve their decisions. The
fascinating finding was that amygdala neurons came to reflect the
value of the options under consideration while the other monkey was
making decisions and the more precise this observational value
coding, the faster the monkey then made optimal choices when it
was their turn to make decisions (Grabenhorst et al., 2019). Thus,
amygdala neurons track important aspects of social context that
facilitate intelligent decisions.

Another study used the Dictator game to demonstrate that the
amygdala appears to be involved in steering decisions in ways that
presumably serve to build or maintain positive social relationships
(Chang et al., 2015). In this study, a decider monkey made decisions
about how to split rewards between themselves and a recipient
monkey. Critically, a significant number of BLA neurons with
value-coding activity predicted the likelihood of making a prosocial
decision (i.e., choosing to deliver the reward to both themselves and
the recipient monkey vs. just themselves, or choosing to deliver the
reward to the recipient monkey vs. neither getting a reward; Chang
et al., 2015). Moreover, infusion of oxytocin into the BLA increased
social gaze and the likelihood of making a prosocial decision. One
interpretation is that the amygdala encodes the value of social
partners and that oxytocin infusion enhanced the social value attrib-
uted to the other individual, thereby biasing attention and choices in a
prosocial direction. Several studies have reported evidence that is
broadly consistent with this social reinforcement idea (Hu et al.,
2021; see also Hurlemann et al., 2010; Liu et al., 2019).

Do these amygdala value signals have meaningful consequences
for social interactions? Lesion studies suggest that they do. Humans
and nonhuman primates with amygdala lesions fail to display typical
social behavior, show changes in social judgments and social
attention, exhibit a decline in social status, and tend to become
socially isolated (Adolphs et al., 1998; Baron-Cohen et al., 2000;
Gothard, 2020; Kennedy & Adolphs, 2010; Kennedy et al., 2009;
Stone et al., 2003). The amygdala may therefore play a key role
(alongside other regions including the PFC) in decision-making by
incorporating information about social context.

Activity That Predicts Choices

We have reviewed evidence that the amygdala integrates a variety
of variables that impact decision-making. Influential models of
decision-making suggest that the integration of relevant variables
may be reflected in a subjective-value signal that ultimately guides
the choices that individuals make. Although these models have
generally suggested that it is the PFC (ventromedial PFC/OFC) that
integrates various information into a subjective-value signal (e.g.,
Levy & Glimcher, 2012; Padoa-Schioppa, 2011), growing evidence
suggests that the amygdala also contributes to a subjective-value
signal that can guide choice.

Numerous studies have found that at the time of making a
decision, amygdala activity does indeed correlate with a
subjective-value signal (Chong et al., 2017; Gelskov et al., 2015;
Grabenhorst et al., 2012; Jenison et al., 2011; Jezzini & Padoa-
Schioppa, 2020; Zangemeister et al., 2016). In fact, a recent study of
economic decision-making found the percentage of cells encoding
the subjective value of the chosen option was higher in the amygdala
(64%) compared to the OFC (41%)—the PFC region most closely
tied to subjective-value computation (Jezzini & Padoa-Schioppa,
2020). Moreover, in the amygdala, this subjective-value signal was
present quickly (~250 ms) after the choice options were presented
and then was sustained throughout the rest of the trial, which
included a delay period, a choice period during which a saccade
was made to indicate the chosen option, and an outcome period
when a juice reward was delivered. In contrast, in the OFC, this
subjective-value signal only transiently appeared after the choice
options were presented and then dissipated thereafter (Jezzini &
Padoa-Schioppa, 2020). These findings suggest that the amygdala
may have a more central role in subjective-value computation than
previously appreciated.

Other studies have similarly found that amygdala activity predicts
the choice that individuals ultimately make (Burgos-Robles et al.,
2017; Chang et al., 2015; Grabenhorst et al., 2012, 2019). For
example, in the economic savings task noted above, amygdala
spiking activity recorded in monkeys predicted save versus spend
(consume) choices with about 80% accuracy (Grabenhorst et al.,
2012). In some of these neurons, there was a value-to-choice
transition that resembled a decision process. In another study,
Burgos-Robles et al. (2017) recorded activity in the BLA while
rats were presented with distinct cues signaling a sucrose reward or a
shock. The key trials involved presenting the cues simultaneously
to investigate decision-making (choosing to approach or freeze)
during goal conflicts. Using a machine learning classifier, the
authors found that amygdala firing patterns were highly informative
(~85% accuracy) regarding the decision that was ultimately made
by the animal in the conflict trials (Burgos-Robles et al., 2017).



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ed broadly.

dual user

ded solely for the persc

»
2
o
E=!
»
=
=
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Finally, while amygdala lesions do not disrupt the presence of
simple reward and punishment feedback signals in the PFC, they
do diminish the presence of expected value signals in the PFC that
are associated with behavioral choices (Hampton et al., 2007). This
is consistent with the idea that at PFC value signals are at least
partially dependent upon value information arriving from the
amygdala.

These findings are consistent with the idea that the amygdala may
play a key role in the computation of an integrated subjective-value
signal that contributes to the choices that individuals make from trial
to trial. This is not to say that the PFC plays no role in subjective-
value computation. Rather, the key point is that the PFC is not the
site at which an integrated subjective-value signal first appears. In
other words, the amygdala and other regions do not simply supply
the PFC with different types of raw material that are then trans-
formed into a decision-guiding signal. It could be the case that a
subjective-value signal is first computed in the amygdala and then
passed to the PFC, or it could be the case that subjective-value
signals emerge from the collective activity of several brain regions
including the amygdala, PFC, and striatum.

Preferential Involvement in Active Decision-Making
Versus Passive Encoding of Stimulus—Outcome
Associations

To clearly favor an integrative value computation account of
amygdala function, it would be useful to demonstrate that amygdala
activity patterns are distinct when individuals are actively making
decisions versus passively processing stimulus—outcome associa-
tions. Several studies have now reported evidence consistent with an
integrative account (Chang et al., 2015; Grabenhorst et al., 2012,
2016, 2019).

In the study noted above on economic savings behavior
(Grabenhorst et al., 2012, 2016), the authors compared a condition
in which the monkey internally formed a savings goal with a
condition in which the monkey saw the same visual cues (which
were associated with the same outcomes), but did not need to make a
decision because their behavior was dictated by an additional
external cue that indicated the correct choice. Importantly, the
authors found that goal-related activity in the amygdala disappeared
when the monkey did not need to make an active decision
(Grabenhorst et al., 2012, 2016).

In the study of social decision-making, described earlier, in which
monkeys decided whether to share a food reward with another
monkey (Chang et al., 2015), the authors found that mean firing rates
of the decider monkey’s BLA neurons correlated with the reward
value of choice options for both themselves and the other monkey,
but only on trials in which the monkey actively made a choice and
not when the experimenter chose the outcome for the monkeys
(Chang et al., 2015). This again reveals that value signals in the
amygdala distinguish between active decisions and passively pro-
cessing cue—outcome associations.

Finally, amygdala activity bears a closer resemblance to trial-by-
trial variation in behavior than to the strict value signaled by cues,
indicating that it more closely aligns with internally generated
decision processes than passive cue—outcome processing (Lee
et al., 2016). Together, these studies provide strong evidence that
the amygdala may be more involved in actively computing values

on the fly in service of decision-making than in signaling previously
learned stimulus—outcome associations.

Preferential Involvement in Goal Formation Versus
Action Planning

Our framework suggests that the amygdala is more involved in
actively forming decisions about which goals to pursue than in
orchestrating actions to achieve them. This idea can be tested by
comparing amygdala activity during goal formation periods with its
activity during action planning and execution periods. Several
studies have done so, and have found evidence that supports our
proposal: Amygdala engagement is stronger during goal formation
than action planning/execution (e.g., Gerlach et al., 2014;
Grabenhorst et al., 2016; Zangemeister et al., 2016).

Summary of the Amygdala’s Role in Decision-Making

We reviewed a growing literature that unequivocally demon-
strates amygdala involvement in many aspects of intelligent deci-
sion-making. Amygdala activity is sensitive to many costs and
benefits, including the magnitude, timing, and probability of re-
wards, and the amount of effort that must be invested to achieve a
goal. A consistent finding across studies is that the amygdala is
preferentially engaged when the individual is actively making a
decision rather than when the individual is passively processing
stimulus—outcome values that are dictated by the experimenter.
These findings are consistent with models suggesting that amygdala
activity encodes a continuously evolving integrative “state value”
signal—an overall assessment of the situation as being good or bad
for the individual, given available actions (Belova et al., 2008; Paton
et al., 2006; for a review, see Morrison & Salzman, 2010). This state
value signal would play a central role in guiding decisions from
moment to moment.

Importantly, we are not suggesting that the amygdala is entirely
responsible for representing valued goals. Rather, the content of
representations of possible future goal states may be supported by a
distributed set of brain regions including sensory cortices, the
hippocampus, and medial prefrontal and parietal regions
(Buckner, 2010; Hassabis & Maguire, 2009; Schacter et al.,
2007). The role of the amygdala in particular may be to assign
value to these possible goal state representations based on their
predicted impact on needs.

An implication of these findings is that the amygdala may in fact
contribute to some functions traditionally considered more “cogni-
tive” in nature. While the PFC has received the bulk of the attention
with respect to executive functions, the data reviewed above suggest
that the amygdala plays a key role in integrating various costs and
benefits and that it influences whether an individual will choose to
persist toward goals that require effort and the consideration of
future outcomes—canonical elements of executive control. Further-
more, because the amygdala plays a role in the process of arbitrating
between competing goals, it may well play a role in keeping an
individual focused on a goal at hand and filtering out distraction
related to alternative options. In line with this, empirical work has
documented amygdala contributions to attention (Adolphs, 2010;
Peck et al., 2013; Pessoa, 2010; Sennwald et al., 2016; Todd et al.,
2012) and working memory (Schaefer et al., 2006). These findings
are consistent with the notion that amygdala functions may
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contribute to effective executive functioning. Thus, while the
functions of the PFC most certainly align with conceptions of
“executive functions,” we suggest that some of the functions of
the amygdala are also deserving of this label.

Finally, it is important to underscore that our goal is to highlight
the underappreciated role of the amygdala in making intelligent
decisions. It is not our intention to portray the amygdala as
performing this role alone in a homuncular manner; rather, it acts
in concert with many other brain regions. The idea that the amygdala
plays a central role in adaptive value computations that guide
decisions could be strengthened in future studies by using tasks
in which it is necessary to dynamically compute and recompute goal
values as various options become available or unavailable.

Amygdala Functions and Model-Based
Reinforcement Learning

If the amygdala encodes an integrative state value signal, how
might this value signal be computed? Answering this question may
illuminate the nature of amygdala value-computing functions and
how these functions work in collaboration with those of the PFC.

The RL literature suggests that state values can be computed in
one of two ways: using a simple model-free algorithm or using a
more sophisticated model-based algorithm (Daw et al., 2005; Dolan
& Dayan, 2013; Sutton & Barto, 1998). Model-free RL algorithms
compute the predicted value of a state (i.e., a stimulus or broader
situation) by storing a running average of rewards obtained in that
state on prior occassions. Because model-free algorithms rely on
trial-and-error training to learn the value of individual states, they
are inflexible and slow to adapt to changes in the environment.

In contrast, model-based RL algorithms compute the predicted
value of a state based on an internal model of the structure of the
world (i.e., knowledge of how different stimuli, situations, actions,
and outcomes are linked together). The use of this knowledge allows
the model-based algorithm to simulate what might happen in the
future and to compute the predicted value of a state “on-the-fly”
based on an integrative assessment of the immediate and future
consequences of choosing to puruse that state. Thus, model-based
algorithms are forward looking and flexible in that they rapidly
update value predictions whenever any part of the overall model of
the world is adjusted in response to new information.

An early and highly influential model proposed that subcortical
regions such as the dorsolateral striatum and dopamine neurons
support model-free computations, while the PFC supports model-
based computations (Daw et al., 2005)." Given that prior work has
been largely agnostic about the algorithmic basis of amygdala value
signals, it has been unclear where the amygdala fits into the story.
Based on existing evidence, we propose that the amygdala plays a
central role in model-based value computations.

The studies that we reviewed above provide preliminary support
for this idea given that they found amygdala activity to reflect both
immediate and future consequences of decisions. More direct and
compelling evidence comes from a study that explicitly compared
amygdala value signals during a reversal-learning task with the
value predictions generated by model-free and model-based algo-
rithms (Prévost et al., 2013). In this study, human participants could
use model-based knowledge about the task structure to anticipate
when there would be a change in the value of one of the choice
options and could use this information to guide their decisions.

Participants’ reaction times indicated that they were indeed using
model-based computations to guide their decisions. Critically,
amygdala activity reflected the anticipated changes in value and
this activity was significantly better accounted for by the value
predictions of the model-based algorithm than the model-free
algorithm (Prévost et al., 2013; for complementary findings in
nonhuman primates, see Saez et al., 2015).

Another study (Klein-Fliigge et al., 2019) had human participants
perform a multistep decision-making task that required them to form
a cognitive map of the task structure in order to earn rewards.
Consistent with a model-based RL system, activity spanning the
amygdala and hippocampus looked just like activity in the medial
PFC and reflected knowledge of the higher-order structure of the
task (i.e., how different position on the map were linked together and
related to the task goal; Klein-Fliigge et al., 2019). While it is unclear
from this study where in the brain representations of task structure
were initially constructed, the fact that these complex representa-
tions can be found in amygdala activity indicates that the amygdala
has the information needed to compute forward looking and flexible
value signals. In fact, amygdala activity did not correlate with a
simpler form of reinforcement-based associative learning during this
task (Klein-Fliigge et al., 2019), further supporting the idea that
amygdala activity is better explained by model-based RL.

Many other studies have examined amygdala functions using
devaluation tasks. Although scholars have generally not framed
these tasks as measuring sophisticated model-based value computa-
tions, they in fact do (see discussions in Daw et al., 2005; Dolan &
Dayan, 2013). Thus, a variety of evidence favoring a model-based
account of amygdala functions has existed, but has not been put
together into a coherent narrative. In a typical devaluation task used
with humans, monkeys, or rodents, a previously rewarded choice is
devalued by feeding the individual the specific reward outcome until
satiated (or by pairing it with a toxin in some versions of the task
using nonhuman animals). The individual is then offered a choice
between the devalued option and a new option. If the individual is
swayed more by previous reinforcement (model-free computation),
then they will choose the previously rewarded choice, even though it
is currently worthless. However, if the individual uses their current
state (being full) to look forward in time and realize that the
previously rewarded choice will now lead to no reward (model-
based computation), they will choose the new option (see Daw et al.,
2005; Dolan & Dayan, 2013). While healthy individuals favor the
new option, monkeys and rodents with amygdala lesions continue to
choose the devalued option, indicating that the amygdala is needed
for model-based value computations in this task (e.g., Hatfield et al.,
1996; Izquierdo & Murray, 2007; Johnson et al., 2009; Malkova
etal., 1997). In line with these nonhuman animal findings, amygdala
activity in humans correlates with the changing value of an outcome
during a devaluation task (Gottfried et al., 2003).

Finally, it is worth noting that the amygdala is densely inter-
connected with regions that have been associated with constructing
models of the world, including the hippocampus and medial PFC
(Behrens et al., 2018; Gilboa & Marlatte, 2017; van Kesteren et al.,
2012). It is difficult to imagine that the amygdala’s value computa-
tions would not take this information into account.

! Notably, the evidence accumulated since the publication of this model
has not been clear-cut. There is little evidence that any brain region supports
purely model-free computations (e.g., see discussion in Doll et al., 2012).
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To summarize, there is growing evidence that the amygdala
contributes to sophisticated model-based value computations. How-
ever, this idea has yet to be incorporated into prevalent models of
value-based decision-making. We hope that the framework pre-
sented here will highlight the sophistication of the amygdala’s
model-based value computations and lead to new insights about
how this region collaborates with the PFC in service of intelligent
decision-making.

The Prefrontal Cortex and Action Planning

If the amygdala can support model-based value computations that
flexibly contribute to the selection of goals, what then is the role of
the PFC? Based on the extensive anatomical connectivity between
PFC subregions and the motor system (e.g., premotor and primary
motor cortices and motor neurons of the spinal cord; Passingham &
Wise, 2012; Picard & Strick, 1996; Vogt, 2009; Yeterian et al.,
2012), we suggest that the PFC is also involved in model-based
computations, but in service of simulating and evaluating possible
action plans to achieve those goals. Thus, while the amygdala and
PFC are both involved in model-based RL, we suggest a division of
labor that places the role of the amygdala closer to the ultimate
motivations that give value to possible goal options, and places the
PFC closer to the cognitive and action-related processes that orga-
nize and implement the means of achieving those goals.

Given that prior reviews have provided in-depth analyses of PFC
functions, here we will present only a selective review of findings
that highlight the role of the PFC in planning and evaluating actions.
Although detailed coverage of the distinct functions of different PFC

Figure 2

subregions (Dixon, Thiruchselvam, et al., 2017; Passingham &
Wise, 2012; Petrides et al., 2012) is beyond the scope of this article,
we will make reference to several PFC subregions where relevant
(Figure 2).

Model-Based Simulations of Possible Action Plans

In natural contexts, goal achievement often requires a series of
actions performed over time in the correct sequence. Moreover, it is
often the case that there are different action options to choose from,
thus requiring a consideration of their relative utility—that is, their
likely effectiveness and possible costs (e.g., a hungry individual
might compare the utility of making a trip to the grocery store,
unpacking food, and then cooking a meal, with the utility of making a
reservation at a restaurant, driving to the restaurant, and then simply
ordering food). Thus, it is critical to use model-based knowledge to
mentally simulate possible action plans and to estimate their relative
costs and benefits (Daw et al., 2005). This mental simulation may
help individuals select an optimal action plan before committing to
the implementation of specific actions, thereby reducing the chances
of negative outcomes. A variety of evidence suggests that the PFC
supports this type of model-based action planning.

A number of studies with humans and nonhuman animals have
shown that PFC activity is sensitive to the model-based structure of
tasks and have demonstrated that PFC lesions or disruption inter-
feres with model-based action selection (Glischer et al., 2010;
Holroyd & Verguts, 2021; Hampton et al., 2006; Jones et al.,
2012; Smittenaar et al., 2013). How exactly does the PFC make
use of model-based knowledge?

A Depiction of PFC Subregions Mentioned in this Article

Lateral
PFC

Note.

We suggest that together, these subregions contribute to several key processes related to the simulation,

evaluation, and implementation of action plans in service of achieving goals. ACC = anterior cingulate cortex; aMCC =
anterior midcingulate cortex; 1OFC = lateral orbitofrontal cortex; mOFC/VMPFC = medial orbitofrontal cortex/
ventromedial prefrontal cortex; PFC = prefrontal cortex. See the online article for the color version of this figure.
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The cognitive control literature suggests that the PFC may use
models of task structure to flexibly plan and implement forthcoming
actions in order to achieve a goal (Badre, 2008; Duncan, 2013;
Koechlin & Summerfield, 2007; Miller & Cohen, 2001). For
instance, fMRI studies with humans have shown that lateral and
medial PFC activity increases when participants are asked to
mentally simulate a sequence of actions (e.g., between 3 and 7
actions) that would be required to achieve a specific task goal or
personal goal (Gerlach et al.,, 2014; Spreng et al., 2010;
Zangemeister et al., 2016). In the previously mentioned study on
economic savings decisions, lateral and medial PFC activity did not
reflect the savings goal value, but did encode the length of the
planned sequence of actions necessary to attain that goal, prior to the
execution of the actions (Zangemeister et al., 2016). In line with this,
single-unit recordings in nonhuman primates suggest that the lateral
PFC is involved in transforming information about one’s current
goal into relevant action plans (Cai & Padoa-Schioppa, 2014). The
ability to simulate temporally extended action plans may rely on the
PFC’s working memory capacities (D’Esposito & Postle, 2015).

Additionally, both fMRI studies with humans and single-unit
recordings in nonhuman primates have demonstrated that PFC
regions encode specific “if-then” rules that specify which actions
are appropriate in different contexts (Bunge et al., 2003; Buschman
et al., 2012; Wallis et al., 2001; Waskom et al., 2017). This rule
encoding may underly the ability to construct flexible action plans as
opposed to fixed action sequences that may be insensitive to context.
Moreover, rules can enable sets of actions to be combined into
meaningful groups and organized hierarchically with concrete ac-
tions nested under more abstract actions (e.g., specific, concrete
actions involved in eating food may be nested under a more abstract
rule or schema that specifies sets of interrelated actions involved in
dining at a restaurant). In fact, a variety of evidence suggests that
lateral PFC organization reflects an action control hierarchy,
whereby more anterior parts of the lateral PFC support more abstract
and temporally extended action planning functions, while more
posterior parts of the lateral PFC support more concrete and
immediate action planning functions (e.g., Badre, 2008; Badre &
Nee, 2018; Christoff et al., 2003; Dixon, Girn, & Christoff, 2017;
Koechlin & Summerfield, 2007; see also Holroyd & Verguts, 2021
for evidence that the ACC additionally contributes to hierarchical
model-based action planning).

Finally, lesion studies have provided converging evidence that
the PFC plays a central role in organizing action plans. Nonhuman
primates with lateral PFC damage have difficulty performing tasks
that require the sequencing of information in working memory
(Genovesio et al., 2014; Petrides, 2000) and humans with PFC
damage have difficulty planning sequences of actions and exhibit
disorganized behavior (Szczepanski & Knight, 2014).

To summarize, a variety of findings support the notion that a
cardinal function of the PFC is the ability to use task structure
(model-based knowledge) to organize action plans, especially when
multiple actions must be linked together in a sequence (Carlén,
2017; Duncan, 2013; Fuster, 2001). Importantly, these action
simulations need not be composed of concrete movements such
as driving to the grocery story. They can also include simulations of
“cognitive actions” such as the cognitive steps involved in perform-
ing a task, or the cognitive strategy that could be used to regulate
one’s emotions (Gross, 2015).

Computing the Utility of Simulated Actions

During the process of simulating possible action plans related to a
candidate goal, there may be different options that come to mind.
These different action plan options must then be evaluated and
compared in terms of utility to discern the specific course of action
that may be optimal to reach a goal. Simply put, the brain needs to
compute the following: How difficult are the candidate actions and
how much time and energy will they require? Are any other costs
involved? If effectively executed, are these actions likely to succeed
in reaching the goal? Several PFC subregions including the medial
PFC, aMCC, and anterior insula appear to play a key role in these
action utility (cost vs. benefit) computations (Alexander & Brown,
2011; Holroyd & Verguts, 2021; Kouneiher et al., 2009; Rushworth
et al., 2007; Shackman et al., 2011; Ullsperger et al., 2010).

Numerous fMRI studies with humans and single-unit recordings
in primates have shown that these PFC regions encode specific
action—outcome contingencies—that is, the likelihood that action X
versus action Y will produce a favorable or unfavorable outcome
given one’s current goals (Brown & Braver, 2005; Hayden & Platt,
2010; Matsumoto et al., 2003; Procyk et al., 2016; Shima & Tanji,
1998; Ullsperger et al., 2010; Vogt, 2009). Correspondingly, lesions
to these regions in nonhuman primates (especially the aMCC)
impair the individual’s ability to determine which specific actions
to select (e.g., they may begin to perseverate on previously success-
ful but no longer useful actions instead of switching to a new action;
Rushworth et al., 2007; Shima & Tanji, 1998).

Beyond determining the likely success of candidate actions, it is
also important to consider the amount of effort that will be required
to reach a goal. PFC regions including the aMCC and anterior insula
have been consistently linked to the representation of the effort
involved in taking various actions (Chong et al., 2017; Croxson
et al., 2009; Kennerley et al., 2009; Kurniawan et al., 2013; Prévost
et al., 2010; Shenhav et al., 2013; Westbrook & Braver, 2016).
Empirical evidence and theoretical models suggest that activity in
these regions reflects the expected benefits of actions minus the
effort cost (though as noted earlier, effort is not always a cost). One
possibility is that these effort computations depend on predictions
about interoceptive signals that are tied to the demands of executing
particular actions (Barrett & Simmons, 2015; Craig, 2002;
Touroutoglou et al., 2020). In any case, these regions play a critical
role in evaluating the effort that would need to be invested if specific
actions were to be taken.

To summarize, PFC regions including the medial PFC, aMCC,
and anterior insula play a key role in evaluating the utility of action
plans. In some cases, the utility-related signals in these regions have
been interpreted more generally as common currency signals related
to the desirability of goal options. However, there are several reasons
to believe that these regions are specifically involved in evaluating
actions. First, the aMCC and insula contain a somatotopic organiza-
tion (i.e., separate zones representing different body parts) which
would be useful for evaluating actions (Dum & Strick, 1991; Jezzini
et al., 2012; Procyk et al., 2016; Vogt, 2009). Second, these regions
exhibit robust activation during action planning and execution
periods (Dixon et al., 2014; Vogt, 2009; Zangemeister et al.,
2016). Finally, electrical stimulation of these regions has the effect
of triggering action programs (Jezzini et al., 2012; Vogt, 2016). Thus,
we suggest that coordination between PFC subregions may support
action utility computations that specify the relative benefits versus
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costs of possible action plans. This information may then be available
to influence amygdala computations related to goal values.

PFC Regions May Be Involved in Aspects of
Goal-Value Computations

Ventral PFC regions including the OFC/ventromedial PFC and
ACC have long been implicated in value-based decision-making
(Bechara et al., 1997; Damasio, 1994; Morrison & Salzman, 2011;
Rolls, 2000; Wallis, 2007). However, their roles have been hotly
debated (Zhou, Gardner, & Schoenbaum, 2021). As noted in the
Introduction, some researchers have argued that these ventral PFC
regions are involved in computing and updating goal values
(Ballesta et al., 2020; Behrens et al., 2008; Juechems et al.,
2019; Levy & Glimcher, 2012; O’Doherty, 2011; Padoa-
Schioppa & Conen, 2017; Rich & Wallis, 2016; Rustichini &
Padoa-Schioppa, 2015; Strait et al., 2014; Yamada et al., 2018).
However, abundant data indicate that these regions are also engaged
during memory tasks that have no value computation component at
all (Addis et al., 2009; Andrews-Hanna et al., 2014; Gilboa &
Marlatte, 2017; Hassabis & Maguire, 2009; van Kesteren et al.,
2012). This suggests that ventral PFC regions may play a more
general role in constructing rich and coherent knowledge structures
(often referred to models of the world or schemas) that can be used to
interpret current events and forecast possible future events in service
of decision-making (Jones et al., 2012; Niv, 2019; Wilson et al.,
2014; Zhou, Jia, et al., 2021). This model construction and future
event forecasting function would facilitate value computations
occurring in other regions (e.g., amygdala). More theory-driven
studies will be necessary to disentangle these ideas.

Thus, although we have emphasized a general distinction
between amygdala-mediated goal-value computations and PFC-
mediated action planning computations, there may possibly be
some ventral PFC regions that participate in the process of comput-
ing and updating goal values alongside the amygdala. Even if this is
the case, it does not take away from the key message of this article,
which is that the function of the amygdala in value computation is
more sophisticated than previously appreciated.

Summary of the PFC’s Contributions to
Action Planning

We have reviewed evidence consistent with the notion that the
PFC plays a role in simulating and evaluating possible action plans.
Thus, while the amygdala may use a model of the world to compute
the current value of particular events and specify goals, the PFC may
use a model of the world to simulate and evaluate sequences of
actions that may serve to achieve those goals. Importantly, our
framework does not downplay the sophistication of the PFC’s role in
decision-making, but it does shift the emphasis from being a “master
integrator and decider” to a sophisticated action planner. We suggest
that input from the amygdala (and other regions) about broad need-
relevant goal possibilities may in fact constrain the action plans
generated by the PFC. In turn, these action simulations would
influence the amygdala’s value computations.

We note that PFC action plans may include the representation of
specific “task goals” and other contextual information, but are
informed by broader need-based goal values computed by the
amygdala. Thus, we are not attempting to reassign to the amygdala

the well-documented representation of “task goals” in the PFC
(Duncan, 2013; Miller & Cohen, 2001; Waskom et al., 2017).
The key idea is that by representing specific task goals or objectives,
the PFC provides the means by which these broader need-fulfilling
goals (tagged with value by the amygdala) are realized.

Finally, it is informative to consider the implications of PFC
expansion over the course of mammalian evolution, given its marked
enlargement in great apes (Hill et al., 2010; Smaers et al., 2017; Wise,
2008). This expansion could potentially be interpreted in terms of the
emergence of a regulatory function over subcortical regions. However,
rather than a stage model of evolution in which cortical regions
(including the PFC) were simply “stacked” on top of subcortical
regions—as if serving as a new regulatory layer—evolutionary biol-
ogy suggests a much more complex and dynamic interplay between
cortical and subcortical evolution (e.g., Cesario et al., 2020). More-
over, the connectional architecture of the brain provides little evidence
for a hierarchical organization in which the PFC serves as a “regula-
tory” structure with disproportionate influence on other regions
(Parvizi, 2009; Pessoa, 2017).

Indeed, the evidence suggests that both the PFC and amygdala
changed during evolution (e.g., with some parts of the amygdala
increasing in size relative to other parts; Chareyron et al., 2011;
Janak & Tye, 2015). Thus, the continued evolution of the amygdala
may have enabled primates to generate more complex and tempo-
rally extended goals, while continued PFC expansion may have
endowed primates with unprecedented ability to simulate extended
sequences of cognitive and physical actions that could be useful in
achieving those goals. When coupled together, these amygdala and
PFC computations may enable primates to rapidly and flexibly
specify and pursue goals with much less trial-and-error experience
(Passingham & Wise, 2012).

Interactions Between the Amygdala and PFC
Interactions in Relation to Decision-Making

Consistent with our framework, many studies have reported evi-
dence of cooperative interactions between the amygdala and PFC (e.g.,
Dal Monte et al., 2020; Gangopadhyay et al., 2021; Saddoris et al.,
2005; Schoenbaum et al., 2003; Yizhar & Klavir, 2018; Zangemeister
et al., 2016). For example, studies that have surgically disconnected
the amygdala from the ventromedial prefrontal cortex/orbitofrontal
cortex in nonhuman primates and rodents have demonstrated that
interactions between these regions are necessary for value-based
learning and decision-making, especially when goal values must be
flexibly updated as contingencies change over time (Baxter et al.,
2000; Gaffan et al., 1993; Gaffan & Murray, 1990; Murray &
Rudebeck, 2018; Saddoris et al., 2005; Schoenbaum et al., 2003;
Sharpe & Schoenbaum, 2016; Zeeb & Winstanley, 2013).

We propose that these interactions are critical for intelligent
decision-making because they allow predicted goal values to be
coupled with action plans (Figure 3). For example, imagine a student
who is deciding between taking one class or another. One class
might be more relevant to the student’s major and will better
position them for a summer internship, but will likely be difficult
and require considerable effort. The other class might be easier and
favor the student’s grade point average (GPA). According to our
framework, the model-based computations of the amygdala would
contribute to value signals that specify the desirability of the two
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classes based on how they will serve one’s needs (e.g., the desire to
gain competence by advancing one’s knowledge in the major vs. the
desire to demonstrate one’s competence by earning a high GPA). In
parallel, the model-based computations of the PFC would be
involved in simulating possible action plans relevant to each course
and their utility (i.e., the costs and probability of success of the
actions that may be required by each class).

As information about the desirability of the classes is passed from
the amygdala to the PFC, this would initially serve to focus the range
of actions that may be considered by the PFC. In turn, the action
utility computations of the PFC would be passed back to the
amygdala and influence goal-value computations. This back and
forth interaction would continue as new input is registered (e.g.,
related to needs or environmental affordances) and the front-running
goal option may continuously shift. This might continue until
amygdala—PFC interactions converge on one option being suffi-
ciently more valuable than the other option, or until the individual is
faced with a time limit and must commit to a decision.

Thus, our position differs from perspectives that implicitly or
explicitly endorse the notion that the PFC functions as a master
integrator and decider—that is, the idea that the PFC receives raw
input from other regions and then serves as the master integration
center that generates the values that drive decisions about both what
to do (which goal to pursue) and how to do it (action planning).
Instead, as we have noted, we envision constant interaction, with
both regions playing complementary roles—amygdala computa-
tions being more informed by the ultimate motivations (current and
future needs) that determine which goals are worth pursuing and
PFC computations being more informed by action-related concerns
(i.e., which actions are possible to execute and their relative benefits
and costs). We suggest that action utility computations of the PFC
do not directly lead to decisions. Instead, this information is passed
back to the amygdala to shape goal-value computations, and as this
information evolves in response to new inputs it is passed back to the

Figure 3

PFC, and so on, thereby creating a continuous cycle of interaction.
Decisions then emerge from this collective activity (as well as the
activity of other regions interacting with the amygdala and PFC).

Perhaps the strongest evidence for our framework comes from the
previously mentioned study of economic savings behavior.
Zangemeister et al. (2016) found that the amygdala but not the
PFC encoded the value of the savings goal during the decision period,
whereas the PFC (lateral PFC and aMCC) but not the amygdala
encoded the planned action sequence to achieve the goal during the
decision and action execution periods. Importantly, amygdala and
PFC activity was functionally coupled during the decision-making
period and was sensitive to the size of the anticipated reward outcome
(Zangemeister et al., 2016), suggesting that their interactions may play
a key role in the decision process. Although many other studies have
shown that communication between the amygdala and PFC is critical
for effective decision-making, they were not designed to test the
specific division of labor we have proposed. We elaborate on this point
in the Limitations and Future Directions section.

Interactions in Relation to Goal-Directed Behavior

While we are primarily concerned with intelligent decision-
making, we provide a brief summary of how amygdala—PFC
interactions may also contribute to effective goal pursuit once a
decision has been made. During goal pursuit, we envision constant
interaction between the amygdala and PFC as the individual moni-
tors progress toward a goal and evaluates whether goal-value
revisions or action strategy revisions are needed. The amygdala
may contribute to the ability to persist toward goals by continuing to
specify their value, which provides an overarching context that
serves as the motivational fire to achieve a particular outcome.

The PFC may simultaneously contribute to the ability to persist
toward goals by translating input from the amygdala into the
sustained activation of a specific task goal and of relevant rules in

A Very Schematic lllustration of Amygdala—PFC Interactions

Goal value computation

Amygdala c1

G2
G3

Goal value computation

Goal value computation
G1 G1
G3

Action probability and

Action probability and

Action probability and

cost cost cost
PFC A1 A1 Al
A2 A3
A3
Time

Note. Inthe simplest versions of our model, potential need-fulfilling goals (G1-G3) and potential actions (A1-A3) for realizing

those goals are evaluated over time until one highly valued goal is converged on and pursued through a specific course of action.
Here we illustrate a simple process of how goal options are evaluated and narrowed down. According to our framework, the
amygdala tags possible goals with value based on current and future needs, while the PFC computes the probability of success
and cost of possible actions. This information is sent back to the amygdala, which updates goal values, and so on. This process
continues until a sufficiently valuable goal associated with a feasible course of action is identified and then pursued. PFC =
prefrontal cortex. See the online article for the color version of this figure.
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working memory. These representations held in working memory
may guide attention to goal-relevant information (Barceld et al.,
2000; Duncan, 2013; Everling et al., 2002; Kam et al., 2018, 2019;
Rainer et al., 1998; Sakai et al., 2002) and specify when to emit or
inhibit particular actions (Aron et al., 2014; Munakata et al., 2011).
The PFC may also monitor the extent to which intended actions are
effectively executed and producing expected changes in the world
and may adapt action strategies on the fly when obstacles are
encountered (Crone et al., 2006; Dosenbach et al., 2006;
MacDonald et al., 2000; Miller & Cohen, 2001). Thus, goal-directed
behavior may evolve as a result of parallel amygdala and PFC
monitoring processes and the cooperative interactions between them.

This perspective differs in a key way from existing models of
PFC—subcortical interactions, such as the model of working memory
proposed by O’Reilly and Frank (2006). Consider the fact that using
working memory to perform a cognitive task may be the action by
which a broad need-fulfilling goal is realized (e.g., proving that you
are smart and competent). The question then becomes, how does the
PFC know which information to hold in working memory in order to
move toward goal realization. In the O’Reilly and Frank (2006)
model, the PFC slowly learns by trial-and-error which goal-relevant
information to represent in working memory based on reward-
prediction signals arising from the striatum. In turn, these striatum
reward-prediction signals are updated based on prediction errors
conveyed by midbrain dopamine neurons (which are themselves
informed by associative learning in the amygdala). When this model
is simulated, it leads to effective working memory task performance,
but requires hundreds of trials to do so, far more trials than humans
generally require.

In contrast, we suggest that the amygdala is playing a much more
direct role in guiding what the PFC comes to represent. We also
propose that the amygdala and PFC (and striatum and midbrain
dopamine neurons) rely on a model of the world to perform their
functions (Behrens et al., 2018; Doll et al., 2012; Prévost et al.,
2013), rather than relying on a model-free (trial-and-error) approach,
given that the latter cannot explain the speed and flexibility of
human task performance. We propose that as long as the amygdala
continues to specify that a broad goal has a high value, this
information flows to the PFC and has the effect of constraining
and stabilizing what the PFC comes to represent. (We suggest that,
in some cases, the PFC may come to represent the “task goal” of
effectively performing a working memory task based on the causal
understanding that this may be a successful means of realizing the
broader goal.) Indeed, one of the defining features of primates, and
humans in particular, is the speed at which people can learn new
tasks, often with very little feedback. This points to a model-based
RL system.

While we have provided just a brief overview of how amygdala—
PFC interactions may contribute to the performance of complex
cognitive tasks, we hope that it may stimulate more attention to the
role of the amygdala, which has often been ignored in favor of
focusing on PFC—striatum interactions.

Although considerable evidence supports our proposal of com-
plementary amygdala and PFC functions, we are quick to acknowl-
edge that there are some limitations to the existing evidence,
primarily due to the fact that many paradigms were not designed
from a theoretical standpoint of trying to understand the comple-
mentary roles and inputs of the amygdala and PFC. Moreover, given
their extended history of sharing information, we would expect to

find some similarity in the information they represent, and some
ability to compensate for one another if damage is present. Never-
theless, it is clear from existing evidence that abolishing amygdala
input (via lesion or pharmacological inactivation) disrupts typical
PFC function (Hampton et al., 2007; Rudebeck et al., 2017;
Schoenbaum et al., 2003) and impairs decision-making (Bechara
et al., 1999; Costa et al., 2016; Gaffan & Murray, 1990; Ghods-
Sharifi et al., 2009; Winstanley et al., 2004), suggesting that the
amygdala participates alongside the PFC in generating intelligent
decisions. Our framework is intended to inspire new research that
may clarify their respective roles with greater certainty.

The Relationship Between the Amygdala, Striatum,
and Dopamine Neurons

How does amygdala function relate to broader motivational
circuits? Considerable research has examined the value-related
functions of dopamine cells in the midbrain (VTA/SN) and their
relationship to the basal ganglia, particularly the striatum. We
provide a brief overview of how these regions may perform
complementary functions to the amygdala. Broadly speaking, mid-
brain dopamine-striatal connectivity patterns suggest a feed-forward
organization that contributes to the translation of goal values,
possibly from the amygdala, into motivated action (Haber &
Knutson, 2010; Salamone & Correa, 2012).

Dorsal Striatum

The striatum is often divided into dorsal and ventral sectors. In
contrast to the role of the amygdala in generating value signals that
drive goal choice, the dorsal striatum (DS) appears to be more
involved in computing action utility and driving action selection
(Averbeck & Costa, 2017). This idea is supported by evidence of DS
involvement in action sequence learning (Knowlton et al., 1996;
Yin & Knowlton, 2006), representing action—outcome contingen-
cies (Samejima et al., 2005; Seo et al., 2012), and influencing the
speed and intensity of action execution (Jurado-Parras et al., 2020;
Mazzoni et al., 2007; Panigrahi et al., 2015). For example, DS
lesions lead to slower actions directed at goals due to increased
sensitivity to movement effort costs, without affecting goal values
per se (Jurado-Parras et al., 2020). Thus, the DS may work closely
with action planning regions of the PFC (Haber & Knutson, 2010)
and participate in the simulation and evaluation of possible actions
to achieve goals, as well as invigorating specific movements during
goal pursuit.

Ventral Striatum

Like the amygdala, the VS often shows anticipatory activity
patterns that correlate with goal values (Bartra et al., 2013;
Haber & Knutson, 2010). However, growing evidence suggests
that the VS may inherit these goal-value signals from the amygdala
and use them to stabilize choices over time (Averbeck & Costa,
2017; Kangetal., 2021). Reward-predictive activity in the amygdala
precedes that in the VS and when the amygdala is damaged or
inhibited via optogenetic stimulation it disrupts the contribution of
the VS to goal-directed behavior (Ambroggi et al., 2008; Stuber
et al., 2011).
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Additionally, other work has shown that depletion of dopamine in
the VS does not affect the hedonic quality of rewards, but does alter
an individual’s willingness to work to obtain rewards (Salamone &
Correa, 2012; Westbrook & Braver, 2016). This suggests that the
VS may be involved in action utility computations and may work
closely with PFC regions that are also sensitive to action costs.
Together, these striatal regions and the PFC may enable individuals
to simulate extended action sequences and to expend the necessary
effort to execute those actions in service of a goal (Westbrook &
Braver, 2016). Thus, while the VS is often discussed in relation to
valuation functions in general, it may be helpful to consider the
functions of this region more specifically in terms of translating
goal-value signals into motivated action output.

Dopamine Neurons

Midbrain (VTA/SN) dopamine neurons also play a key role in
value-related processes. After a decision is made and an action is
executed, individuals need to compare the actual outcome that is
experienced to the predicted goal value and action utility in order to
learn and update these predictions for subsequent decisions. Compu-
tational models and empirical findings suggest that midbrain (VTA/
SN) dopamine neurons signal reward-prediction errors when out-
comes are better or worse than expected (D’Ardenne et al., 2008;
Gershman & Uchida, 2019; Glimcher, 2011; Kim et al., 2020;
Schultz et al., 1997) and drive value updating in striatal and
amygdala circuits (Nasser et al., 2017; O’Doherty et al., 2004;
O’Reilly & Frank, 2006; Pessiglione et al., 2006). To compute
reward-prediction errors, midbrain dopamine neurons may compare
predicted goal values conveyed by regions including the amygdala
with the actual outcomes that occur after action execution, conveyed
by regions including the brainstem, hypothalamus, and PAG. In line
with this proposal, prediction error signals have been consistently
associated with the midbrain dopamine neurons and the striatum, but
are less frequent in the amygdala, which tends to predominantly
encode goal values (Averbeck & Costa, 2017; Belova et al., 2008;
Paton et al., 2006). Although the prediction error function of
dopamine neurons has often been cast in terms of model-free
RL, it could just as well be interpreted in terms of signaling
when to update models of the world (see e.g., Langdon et al., 2018).

To summarize, we have suggested that the amygdala is preferen-
tially involved in predicting the value of possible future goal states,
while the striatum and midbrain (VTA/SN) are preferentially
involved in evaluating the utility of actions, and in updating action
strategies when unexpected outcomes occur. However, these ideas
are preliminary and require more studies that directly compare
activity patterns across these regions.

Other Regions Involved in Decision-Making

Of course, there are regions that participate in decision-making
other than those discussed here. We provide a brief overview of the
roles of these regions in order to provide a broader context in which
to understand the contributions of the amygdala and PFC.

In contrast to the flexible and domain-general roles of the
amygdala and PFC, some regions appear to make domain-specific
or species-specific contributions to decision-making. For instance,
studies of perceptual decision-making suggest that regions including
the posterior parietal cortex, frontal eye fields, and premotor cortex

participate in early and late stages of the decision-making process
(Churchland et al., 2008; Cisek & Kalaska, 2005; Ding & Gold,
2012; Shadlen & Newsome, 2001). Specifically, these regions
accumulate evidence in ways that support the categorization of
sensory stimuli (i.e., deciding what is being sensed in the environ-
ment) and contribute to relevant sensorimotor transformations that
implement specific motor outputs (e.g., reaching or walking).
Unlike the amygdala and PFC, however, these regions do not
appear to be directly involved in domain-general value computa-
tions per se (e.g., Balan & Gottlieb, 2009).

Other regions such as the superior colliculus and PAG are
involved in value computations, but in relation to solving very
specific (possibly species-specific) problems. For example, these
regions contribute to the implementation of prepared orienting and
defensive behaviors (e.g., deciding to freeze or flee) in response to
species-relevant cues when a rapid decision needs to be made (e.g.,
when an encounter with a predator is imminent; Bandler & Shipley,
1994; Cisek, 2019; DesJardin et al., 2013; Mobbs et al., 2007).
These regions may also contribute to more flexible behaviors, but
their functions appear to emerge from very specific and evolution-
arily conserved value computations. In sum, while we have focused
on the amygdala and PFC in this article, it is important to acknowl-
edge that they operate in the context of other regions that also
contribute to various aspects of decision-making.

Thoughts on the Development of the Brain’s
Decision-Making Circuitry

Most cultures have narratives about “stages of life” and about
transitions that occur across the lifespan. The translation of these
narratives into neurobiological theories (Casey et al., 2008; Shulman
etal., 2016; Steinberg, 2008) often suggests that intelligent decision-
making is slow to emerge over development and corresponds with
the protracted maturation of the PFC-anchored cognitive control
system and its ability to regulate the workings of the valuation
system. Implicit (or explicit) in these theories are several assump-
tions: (a) the brain is composed of two distinct systems and poor
decisions often reflect an imbalance between these systems; (b) the
valuation system naturally has difficulty discerning what is good or
bad for individuals and may often be unhelpful unless kept in check
by a cool cognitive system; and (c) for this reason, the central
nervous system may be somewhat “dysfunctional” until adulthood
(but see Tottenham & Gabard-Durnam, 2017; Werchan & Amso,
2017). Recent theoretical and empirical work calls these assump-
tions into question and instead suggests that effective neurocogni-
tive functioning reflects the development of a unified system for
making decisions that are sensitive to the specific ecological niches
and challenges faced at each point in development (Tottenham &
Gabard-Durnam, 2017; Werchan & Amso, 2017).

There is good reason to believe that the amygdala (and valuation
system more broadly) is intelligent even from early in life and that
input from the amygdala provides the foundation for the proper
functioning of the PFC (Tottenham & Gabard-Durnam, 2017).
Childhood is a period when individuals must be keenly sensitive
to cues that predict whether a person, place, or thing is harmful or a
source of safety and pleasure. This enhanced sensitivity allows for
the rapid formation of beliefs and predictions, as need-related goals
are pursued, about how the world works and how needs get fulfilled
or blocked (Dweck, 2017). As reviewed earlier, there is abundant
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evidence to suggest that the amygdala plays a central role in learning
about and guiding decisions based on goal values. Based on these
considerations, Tottenham and Gabard-Durnam (2017) suggest that
the precocious amygdala plays a key role in “teaching” the slower
developing PFC about the world and what is important to the
individual. Furthermore, amygdala lesions have a severe and per-
sistent effect on socioemotional behavior that is more pronounced
when the lesions occur early in development (Malkové et al., 2010).
Similarly, experiencing early-life adversity (e.g., low-quality care-
giving) disrupts the typical development and functioning of the
amygdala and has persistent effects on behavior and well-being
(e.g., heightened anxiety) that are not remediated by PFC develop-
ment (Cohen et al., 2013; Tottenham, 2012). Finally, studies have
shown that the quality of early mother—infant bonding is associated
with later amygdala structure (Moutsiana et al., 2015). Existing data
thus suggest that effective learning about how to operate in the world
is closely related to the amygdala valuation system and is compro-
mised when individuals must adapt to highly stressful environments.

A second key point is that the PFC cognitive control system may be
more functional early in life than is usually appreciated (Werchan &
Amso, 2017). For example, evidence suggests that the PFC
contributes to the use of behavior-guiding rules that support goal
achievement at least as early as 3-years of age (Bunge & Zelazo,
2006). Therefore, a collaboration between the amygdala and PFC
may begin early in life. As the amygdala forms increasingly complex
need-fulfilling goals over the course of development, this may “push”
the PFC to develop more sophisticated representations of rules and
action plans in order to realize goals that can be conceived of but
are currently out of our reach (see also Tottenham & Gabard-
Durnam, 2017).

A key topic in the developmental literature is whether risky
decision-making during adolescence is due to an imbalance between
distinct brain systems, with the immature control system not yet
having the capacity to regulate impulses arising from the brain’s
valuation system (Steinberg, 2008). We suggest that there may be
alternative explanations and that existing accounts may, to some
extent, reflect an adult value system—one that may not align with
the adolescent value system (Yeager et al., 2018). Specifically,
adolescents put a very high premium on their status among peers
and, rather than being unable to control themselves, may be willing
to risk physical harm to avoid humiliation or rejection from peers
(Blakemore & Mills, 2014; Crone & Dahl, 2012; Somerville, 2013).
Thus, we suggest that circuits including the amygdala give motiva-
tional priority to certain types of social goals during adolescence.

We further suggest that emerging executive function abilities of
the PFC are often put to use in service of these goals. Adolescents
sometimes demonstrate quite sophisticated control over their
behavior—they strategize to form alliances, coordinate future activ-
ities, and engage in complex mentalizing and reasoning to under-
stand, predict, and manipulate the behavior of others. Indeed, it has
been argued that existing neuroimaging findings are incompatible
with a simple PFC immaturity story (Crone & Dahl, 2012). Thus, it
is unlikely that the root of adolescent patterns of behavior is that the
amygdala (and valuation circuit more broadly) simply overpowers
and essentially overrides the workings of the vulnerable PFC
cognitive control system (see also Werchan & Amso, 2017). In
line with this idea, a longitudinal study using a large sample of
adolescents and young adults revealed that the amygdala and PFC
exhibited positive functional connectivity across all ages, and

stronger functional connectivity was associated with less alcohol
use (Peters et al., 2015, 2017). Although different interpretations are
possible, one view is that this pattern may be opposite to the pattern
(i.e., negative functional connectivity) that is generally predicted by
the notion that the PFC and amygdala have an antagonistic relation-
ship and that the PFC needs to “regulate” the amygdala. Instead
adolescents appear more than capable of engaging PFC-mediated
executive control functions, but may chiefly do so when they are
motivated to (Crone & Dahl, 2012). Unhealthy (e.g., risky) behavior
during adolescence may often have to do with how executive
functions are used rather than immaturity of executive functions
per se. While there is no denying that some PFC functions may
continue to evolve into adulthood, there is little evidence to suggest
that a clear shift between an immature PFC and mature PFC can be
identified (Somerville, 2016).

To summarize, we suggest that the amygdala and PFC work
together in age-appropriate ways at each point in development
(Tottenham & Gabard-Durnam, 2017; Werchan & Amso, 2017).
Yet, there is undoubtedly truth to the intuition that excessive
emotion can “make” people act in ways that are not in their self-
interest and that “calming down” can allow them to make better
decisions. However, this may not be the result of the PFC regulating
the amygdala. Instead, it may reflect a shift in the breadth of goals
that are being considered in the amygdala—PFC circuit. In some
cases, excessive emotion may reflect overprioritization of a specific
goal at that moment within the amygdala—PFC circuit. Moreover,
the desire to step back and calm down in order to have a more
balanced assessment of different goals and make a “better”” decision
may itself be a value-guided process reflecting the emergence of new
possible goals in the amygdala—PFC circuit. This means that rather
than cool rational intellect alone reining in excessive emotions, it
may actually be that a different type of valuation—one that is
sensitive to immediate and future consequences—comes online
and alters the initial goal valuations that generated the excessive
emotion (Gross, 2015). Simply put, developmental changes in the
ability to reflect on emotions and desired goal states and the capacity
to regulate emotions may reflect more sophisticated goal-related
processing and communication between the amygdala and PFC.

Implications of the Framework

In this section, we explore some of the implications of our
proposed way of thinking about the amygdala and its relationship
to the PFC.

Lesson 1: Expected Value Depends on
Amygdala-PFC Communication

It is widely accepted that the expected value of a particular goal is
a product of the goal’s desirability/importance and some function of
the probability of that goal being successfully realized (Eccles &
Wigfield, 2002; Rangel et al., 2008). However, the way that
expected goal value is generated in the brain remains unresolved.
We have suggested that the answer to this question lies, at least in
part, in the effective communication between the amygdala and
PFC. While existing work has mainly searched for a relationship
between the expected value and the activation strength of individual
brain regions, we suggest instead that the expected value emerges
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from the dynamic communication patterns (functional connectivity)
between the amygdala and PFC.

Lesson 2: Motivation Is an Inherent Aspect of
Intelligent Behavior

Different views of intelligence were popular in the early 20th
century when intelligence became an object of scientific interest.
David Wechsler, the creator of a popular IQ test, defined intelligence
as: “the global capacity of a person to act purposefully, to think
rationally, and to deal effectively with his [sic] environment.”
(Wechsler, 1944). In contrast, Lewis Terman, the creator of another
1Q test (an adaptation of Alfred Binet’s original assessment), defined
intelligence as “the ability to carry on abstract thinking.” (Terman,
1921). Wechsler’s definition, but not Terman’s, encompasses amyg-
dala functions in that acting purposefully within one’s environment
arises from value-based decision-making.

Without minimizing the contribution of PFC functions to impor-
tant outcomes in school and in life, those outcomes could not be
attained if the individual placed little value on them or, said another
way, had little or no motivation to achieve those outcomes. It would
be difficult to identify highly successful individuals who had little
interest in or saw little significance in what they were doing. Brilliant
scientists like Einstein did not simply sit and exercise their PFC-
mediated cognitive abilities for no particular reason. Instead, bril-
liant minds are noted for their dedication to what they study, and
typically see its significance for understanding or improving the
world. Our point is simply that PFC and amygdala functions always
work synergistically to produce achievement, including intellectual
achievement.

From a broader perspective, it is clear that functions linked to
human intelligence, including abstract thinking, did not evolve in a
vacuum for their own sake. They evolved in the context of key
survival-related activities, including hunting in large coordinated
groups, using tools in complex ways, and keeping track of myriad
relationships and one’s status within ever-growing social commu-
nities. To act purposefully and flourish within human society
required a deeply ingrained synergy between evaluating possible
goals and using various cognitive abilities in service of realizing
those goals. Simply put, motivation may readily be seen as an
inherent aspect of intelligence; motivation and intelligence are not
two independent factors. We have already noted neuroscientific
findings that support this idea. For example, Westbrook and Braver
(2016) argue that working memory is inherently a motivated process
because it carries a subjective effort cost that favors disengagement
and requires a sufficient incentive to become initiated and remain
engaged (see also Botvinick & Braver, 2015; Shenhav et al., 2013).
In line with this motivational account of working memory, amyg-
dala activation predicts the speed of responding in difficult three-
back working memory tasks (with no accuracy trade-off) suggesting
that it may play a role in supporting cognitive processes (Schaefer
et al., 2006). Additionally, amygdala activation is associated with
enhanced attention to, and memory encoding of, goal-relevant
information (Anderson & Phelps, 2001; LaBar & Cabeza, 2006;
McGaugh, 2004; Peck et al., 2013; Pessoa, 2010; Todd et al., 2012;
Vuilleumier, 2005). Finally, Pessoa (2008, 2010) has argued that the
value-based functions of the amygdala are so central to attention,
memory, and decision-making that the amygdala cannot be consid-
ered a purely emotion region, but instead must be considered as a

critical brain hub that contributes to a variety of complex cognitive
abilities.

This conceptualization of intelligence and integrated brain func-
tion leads to a different perspective on why individuals may vary in
success at school. We suggest that one important factor may be that
some individuals are better able to internally generate interest and to
perceive significance even in the decontextualized material often
taught in schools. These individuals may more easily harness
amygdala—PFC circuitry despite the often impersonal nature of
the material. However, if provided with support for finding interest
and significance in the material (or if provided with more personally
relevant or interesting material), other individuals may learn and
perform well too. Indeed, empirical work has demonstrated that
when students are guided to think about how the classroom material
(e.g., science lessons) is relevant and useful to their lives, it can lead
to better learning (Hulleman et al., 2010; Hulleman & Harackiewicz,
2009). Thus, we suggest that optimal learning and performance
depends on igniting amygdala—PFC interactions and there is much
exciting research to be done in this area in the future.

Lesson 3: Reconceptualizing the Relationship
Between the Amygdala and Psychopathology

Research has documented a link between amygdala activity and
clinical disorders such as depression and anxiety (Etkin & Wager,
2007; Shackman et al., 2016; Whalen et al., 2002). Why does this
link exist? It could be argued that over-activity in the amygdala
generates excessive threat processing and negative affect and
impairs normal functioning. However, this is unlikely to be the
full account given the evidence reviewed earlier indicating that the
amygdala is also involved in positive value computations. Further-
more, when amygdala activity occurs during unpleasant emotions
this may reflect adaptive motivation to cope with negative life
circumstances, rather than some sort of maladaptive response
(Larsen et al., 2003). Finally, aberrant activity in the amygdala
may be driven by faulty input from PFC regions (particularly the
medial PFC and ACC) that contribute to negative self-beliefs and
ruminative thought patterns (Berman et al., 2011; Dixon et al.,
2020; Farb et al., 2011; Kross et al., 2009; Kucyi et al., 2014;
Sheline et al., 2009). This activity, common in depression and
anxiety (Gotlib & Joormann, 2010; Nolen-Hoeksema et al., 2008;
Talmon et al., 2021) may in turn drive amygdala hyperactivity.
These findings cast doubt on a modular perspective in which
amygdala activity on its own is directly linked to psychopathology.

According to our framework, clinical disorders may often reflect a
problem in the relationship between the amygdala and PFC,
whereby goals are not matched with appropriate means for achiev-
ing them. In some cases, the individual may identify goals that they
lack the means to realize, leading to frustration, negative self-beliefs,
and discontent. In other cases, an individual may have the skills to
realize goals, but have difficulty identifying adaptive goals that
should be pursued. In simple terms, these cases may reflect either the
PFC failing to identify effective strategies for realizing goals, or the
amygdala failing to properly assign value to available goals, result-
ing in value being assigned to inappropriate/unhealthy goals or in
little value being assigned to any goals, as in the anhedonia that often
accompanies depression. Finally, as alluded to above, negative self-
beliefs and ruminative strategies in the PFC may promote low
expectancy for actions that could serve constructive goals or may
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lead to poor amygdala-guided goal choices, which in turn may
reinforce negative self-beliefs, creating a feedback loop in which
neither appropriate goals nor means are selected.

A common theme across these examples is the notion that
psychopathology may often reflect a broken or misguided partner-
ship between the amygdala and PFC. Therefore, instead of framing
psychopathology as a lack of PFC control over a wayward or
overactive amygdala, we instead favor the view that the brain’s
natural state is one of harmony between the amygdala and PFC, and
that a breakdown in this relationship can be a primary source of
discontent.

Recent findings are broadly in line with this proposal (Gaffrey
et al., 2021; Klein-Fliigge et al., 2020, but see Gee et al., 2013).
Klein-Fliigge et al. (2020) found that higher satisfaction with life
and lower experience of negative emotions in adults was associated
with stronger functional connectivity between the amygdala and
several PFC subregions (medial PFC, aMCC, ACC, lateral PFC,
OFC). Similarly, Gaffrey et al. (2021) found that stronger functional
connectivity between the amygdala and PFC (medial PFC and ACC)
was associated with higher emotion regulation scores and lower
negative affect in preschoolers. While these studies examined
individual variation in healthy samples, the conclusions may well
extend to clinical samples. Notably, these findings can be seen as
opposite to what might be expected if the PFC was involved in
reining in the amygdala, which might be weaker/negative functional
connectivity. However, it should be noted that the nature of
amygdala—PFC interactions may vary across different PFC subre-
gions. Together, this work points to the relevance of investigating
the relationship between amygdala—PFC communication patterns
and psychopathology.

Limitations and Future Directions

Several possible limitations of our framework and several possi-
ble future directions are worth noting. First, direct evidence for our
framework is currently limited by the fact that few existing studies
were explicitly designed to test the nature of amygdala value
computations (whether model-based or model-free), or tease apart
amygdala and PFC contributions to decision-making based on the
relative division of labor that we have proposed. We hope that this
article will stimulate rigorous tests of our proposal via innovative
task designs and new analytic methods. In particular, future studies
could depart from the typical use of static stimuli and instead use
experimental tasks that approximate more naturalistic situations
(Paré & Quirk, 2017) involving rich task structure, dynamic stimuli,
fluctuating needs, and freedom to select from a larger repertoire of
actions. This would enable researchers to measure constantly evolv-
ing value signals (both goal value and action utility) and possibly
make it easier to disentangle amygdala and PFC computations.
Given the limited temporal resolution of fMRI, magnetoencepha-
lography (MEG) or intracranial electroencephalogram (EEG) may
be ideally suited for assessing the evolution of these decision-
relevant variables in the human amygdala and PFC.

If a task presented sequential pieces of information that are
relevant to computing the value of various goals, or of action
strategies and expectancies, it could allow the experimenter to
monitor the evolution of neural signals related to these components
of decision-making. We would predict that value signals related to
the formation of a goal (and online updates to those goals) would

emerge earlier in the amygdala than PFC. Conversely, we would
predict that signals reflecting action planning (and online updates to
those plans) would emerge first in the PFC. While invasive record-
ings in nonhuman animals have the capacity to shed light on these
timing-related questions, the evolutionary changes in the amygdala
and PFC suggest that investigations in humans are necessary for a
complete understanding of how we make decisions.

Second, the current framework would benefit from integration
with data regarding specific amygdala nuclei, cell types, and
microcircuit architecture (Duvarci & Pare, 2014; Janak & Tye,
2015; Pitkédnen et al., 1997; Swanson & Petrovich, 1998). Recent
advances in cell type- and projection-specific manipulations using
targeted optical and molecular genetic methods have provided
unprecedented insight into the microscale dynamics within the
amygdala (Janak & Tye, 2015). For instance, these methods allow
investigators to examine how specific cell groups respond to various
stimuli and how stimulating or silencing a specific cell group in the
amygdala affects other cell groups within the same nucleus, cell
groups in another nucleus, or cell groups in another brain region
(e.g., Ciocchi et al., 2010; Haubensak et al., 2010; Hong et al., 2014;
Tye etal., 2011). Understanding these microcircuit interactions may
ultimately help us to understand how information flows throughout
different nuclei of the amygdala, what exactly is being integrated,
and the full extent to which the amygdala is capable of sophisticated
value computations. However, there are currently not enough data to
bridge from this level of analysis to macroscale functions such as
decision-making. Understanding how microcircuit dynamics con-
tribute to decision-making computations will be a key task for future
studies and may require new concepts and analytic methods, such as
those used in network science to generate multiscale characteriza-
tions of complex systems (e.g., Bassett & Sporns, 2017).

Conclusion

In the framework proposed here, the amygdala and PFC play
complementary roles in the process of co-constructing intelligent
decisions. We have proposed that these regions are part of a coordi-
nated model-based RL system in which the amygdala preferentially
contributes to the computation of value signals related to potential
goals that may serve the fundamental needs of the individual, while
the PFC preferentially contributes to the mental simulation and
evaluation of possible action plans that may achieve those goals.
Just as important, we emphasize that intelligent behavior requires
continuous interaction between these regions throughout the process
of goal pursuit. We have also proposed that as individuals navigate a
complex and evolving world they compute and recompute goal
values via interactions between the amygdala and PFC.

This framework is a starting point that will need to be refined as
further knowledge is gathered regarding the functional roles of
different amygdala nuclei and PFC subregions and microcircuit
details. In closing, we believe that the emerging picture of
amygdala—PFC interactions has broad implications for scientists
and how society in general views the mind. In some ways, depic-
tions of the amygdala and PFC in the popular imagination have
mirrored the age-old philosophical debate about the relative merits
and status of reason (including self-regulation) versus passion. We
note that in response to past philosophies that stressed the impor-
tance of reason prevailing over passion, David Hume (Hume, 1738)
protested. Instead, he claimed that: “Reason is, and ought only to be
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the slave of the passions, and can never pretend to any other office
than to serve and obey them.” The neuroscientific data suggest a
more nuanced middle ground, in which passion and reason are not
clearly separated in the brain. Both the amygdala and PFC support
functions related to value, cognition, and self-regulation. We have
proposed that the functions of these regions are complementary and
contribute to the process of generating goals and of generating the
means of pursuing them effectively.
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